Bilim Çağı

Mekanik. Mekanik, 18. yüzyılda bilimler arasındaki öncülüğünü sürdürdü, gelişme süreci içinde de fiziğin bir dalı durumundan, matematiğin bir dalı durumuna geçti. Fiziğin birçok problemi, matematiksel analizin giderek yetkinleşen yöntemleriyle çözülebilecek matematik problemlerine indirgendi. Matematikte ve matematiksel fizikte en yetkin ve verimli bilim adamlarından biri İsviçreli Leonhard Euler’di. Onun geliştirdiği değişimler hesabı çok karmaşık problemlerin çözümünde güçlü bir araç oldu. İki Fransız matematikçi, Jean Le Rond d’Alembert ve Joseph-Louis Lagrange, mekaniği bütünüyle matematiğe dönüştürmeyi başardılar. Nevvton mekaniği, fiziksel gerçekliğe uygunluğu belirlenerek sınanabilirdı. 18. yüzyıl başlarında bu sınama gerçekleştirildi. Descartes’çılar, yerçekimine yol açan esir burgaçlarının ekvatorda en çok basınç yapacağı görüşünden yola çıkarak, Yer’in biçiminin ekvatorda basık, kutuplarda şişkin olması gerektiğini ileri sürüyorlardı. Newtoncular ise merkezkaç kuvvetin ekvatorda en büyük olmasından ötürü Yer’in ekvatorda şişkin, kutuplarda basık olacağını öne sürüyorlardı. Laponya ve Peru’da gerçekleştirilen duyarlı meridyen yayı ölçümleri New-toncı görüşün doğruluğunu ortaya koydu. Newton mekaniğine son büyük katkıyı La-place gerçekleştirdi. Onun 1798-1827 arasında yayımladığı Traite de mecanique celes-te (Gök Mekaniği) adlı başyapıt, bu alanda Newton’dan esinlenilerek elde edilmiş olan bütün sonuçları sistemleştirdi. Laplace, gezegenlerin yörüngelerinde kütleçekimsel etkileşimlerin yol açtığı tedirginliklerin gerçekte periyodik olduğunu, yani Güneş sisteminin kararlı olduğunu, bu nedenle de Newton’ın öne sürdüğü gibi Tanrı’nın müdahalesine gereksinimi bulunmadığını gösterdi.Romantik başkaldırı. Newton mekaniğinin zaferi, belki de kaçınılmaz olarak, bir tepkiye yol açtı ve bu tepki bilimin daha da ilerlemesine katkıda bulundu. Kökenleri çok çeşitli ve karmaşık olan bu tepkiye yalnızca bir örnek vermek yeterlidir. Alman filozofu Immanuel Kant, bilim adamının atomlar, ışık parçacıklan ya da elektrik gibi nesnelerle doğrudan ilişki içinde bulunabileceği biçimindeki Newtoncı görüşe karşı çıktı. Kant’a göre insanın algılayabileceği tek şey, ancak kuvvet olabilirdi. Kantçı görüş, kuvvetlerin belirli parçacıklarda somutlaşması gereğini yadsıyor, aynca parçacıklar arasında bulunan ve kuvvetleri içeren boşluğa özel bir önem veriyordu. Bu görüşlerden, kuvvetlerin dönüşümü ve korunumu ile alan kuramı konulannda önemli gelişmeler ortaya çıkacaktı.

Doğadaki çeşitli kuvvetler arasında ilişki bulunmadığına inanmayı reddeden ve kimyasal ilgi (afinite), elektrik, ısı, magnetizma ve ışığın, temel çekme ve itme kuvvetlerinin değişik görünümleri olduğu görüşünü benimseyen Hans Christian 0rsted 1820’de, bir telden geçen elektriğin yakındaki bir pusula ibresini saptırdığını gözlemleyerek elektrik ile magnetizmanın ilişkili olduğunu gösterdi. Bu temel buluş, bütün yaşamı boyunca bir kuvveti başka kuvvete dönüştürme konusunda çalışmış olan İngiliz fizikçi Michael Faraday tarafından geliştirildi ve genişletildi. Elektrik akımının ve mıknatıs-lann oluşturduğu kuvvetleri inceleyen Faraday, bir sistemin enerjisinin gerçek ya da hipotetik parçacıklarda odaklanmadığını, sistemin tümüne yayılmış durumda olduğunu belirten alan kuramının temellerini attı.
Kuvvetlerin birbirine dönüşmesi konusu, doğal olarak korunum sorusunu gündeme getiriyordu.

Elektrik enerjisi magnetik enerjiye dönüştüğünde bir enerji kaybı söz konusu muydu? Bu sorunun ilk yanıtlarından birini Faraday ortaya koydu: Belirli miktardaki elektrik “kuvveti”, her zaman belirli miktarda kimyasal madde ayrıştırıyordu. Daha sonra James Prescott Joule, Robert Mayer ve Hermann von Helm-holtz’un çalışmalarıyla bilim için çok önemli bir sonuç olan enerjinin korunumu ilkesi ortaya kondu.

Temel kuvvetlerin niteliklerinin araştırılmasında matematiğin de önemli katkısı oldu. Isının incelenmesi sağlam matematiksel temellere dayanan termodinamiğin gelişmesine yol açtı. Nevvton’ın, ışığın parçacıklardan oluştuğuna ilişkin kuramı, yerini Augustin-Jean Fresnel’in dalga kuramına bıraktı. Elektrik ve magnetizma olguları William Thomson (Lord Kelvin) ve James Clerk Maxwell tarafından özlü bir matematiksel biçime kavuşturuldu. 19. yüzyılın sonuna gelindiğinde, enerjinin korunumu ilkesi ve termodinamiğin ikinci yasası sayesinde bütün fiziksel dünya, karmaşık, ama kesin matematiksel ifadeler aracılığıyla anlaşılır duruma gelmişti.

19. yüzyılda atomlar da benzer biçimde kavranabilir duruma geldi. John Dalton’un, atom türlerinin yalnızca ağırlıkları bakımından birbirlerinden farklı olduğu varsayımından yola çıkan kimyacılar, çok sayıda elementi belirlemeyi ve bunlann aralarındaki etkileşimlerin yasalarını ortaya koymayı başardılar. Elementleri atom ağırlıklarına ve tepkime biçimlerine göre sıralayıp düzenlemek olanaklı hale geldi. Sonuçta Di-mitriy Mendeleyev’in geliştirdiği periyodik tablo ortaya çıktı.

Bir yanıt yazın

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Bu site, istenmeyenleri azaltmak için Akismet kullanıyor. Yorum verilerinizin nasıl işlendiği hakkında daha fazla bilgi edinin.